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12. EQUATIONS OF STATE 
Equations of state (EOS) are, for pure substances, mathematical relations between volume, pressure, 

and temperature. For mixtures, EOS in addition include composition. EOS are very versatile tools for 

engineering applications. They can be used for all states of matter (mostly gas, vapor, and liquid), and 

they can describe transitions between states. 

The development of EOS for the representation of real systems started in 1873 with the Publication of 

the van der Waals (vdW) EOS. [1] Since then hundreds of different EOS have been proposed. It is 

beyond the scope to review in detail all these developments. In fact, all of the oil/gas pressure-volume-

temperature and phase equilibria computations are based on one equation of state. For broad reviews 

of EOS, the reader is referred to [2] - Abott (1979), [3] - Leland (1980), and [4] - Tsonopoulos and 

Heidman (1986). In addition [5] - Tzouvaras (1986) gives a particularly clear and detailed account of 

the different types of EOS. 

 

12.1. TYPES OF EQUATIONS OF STATE 

Leland (1980) [3] distinguished between four families of EOS: 

1. van der Waals (vdW) family 

2. Benedict-Webb-Rubin (BWR) family 

3. Reference-fluid equations 

4. Augmented-rigid-body equations 

The vdW family encompasses simple, mostly cubic EOS. Their main characteristic is the separation 

between the repulsive and attractive effects. Despite their simplicity, these EOS display quantitatively 

correct performance, even being able to describe multiphase equilibria, tricritical points, and other 

complicated phenomena ([6] - Michelsen and Heidemann, 1988). Cubic EOS are discussed further in 

the next section. 

The Benedict-Webb-Rubin (BWR) family includes complicated EOS and are empirical extensions of the 

virial EOS. Besides the Benedict-Webb-Rubin (1940) [7] EOS itself, the most significant members of this 

family for oil/gas application are the Starling (1973) EOS [8], and the Lee and Kesler (1975) EOS [9]. 

The reference-fluid equations aim at accurate representation of a large amount of PVT data for pure 

substances. The equations contain many parameters. An important application of reference-fluid 

equations is their use as reference fluids in corresponding state theories, see e.g., Mollerup and 

Rowlinson (1974) [10]. 

The augmented-rigid-body family combines description of repulsive forces between hard molecules of 

different shapes with expressions for the molecular attractions. The sound theoretical basis of the 

repulsive term is the most important and promising characteristic of these EOS. The Carnahan and 

Starling (1972) [11] expression for the repulsion between hard spheres has been repeatedly used. 

Approximations to the augmented-rigid-body EOS include simplifications of the expression for the 

repulsive term, such as in the Cubic-Chain-of-Rotators EOS ([12] - Kim et al., 1986). 

Today all four families of EOS receive considerable attention. Recent literature, however, mainly 

contains developments in EOS of the vdW family, because of their simplicity and practicality, and of 

the augmented-rigid body EOS, because of their theoretical foundation and potential for accurate 

extensions. 

The oil/gas PVT- and phase equilibrium computations in this book are based on a cubic equation of the 

vdW family. The reasons for this choice are: 
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1. Cubic EOS of the vdW family yield relatively simple expressions for the thermodynamic properties 

and phase equilibrium relationships of interest. 

2. The EOS of the other three families, though more complicated in nature, do not give 

quantitatively better descriptions of mixture phase transitions than do cubic EOS ([3] - 

Tsonopoulos and Heidman, 1986). 

It is well known that the more complicated EOS yield better predictions of liquid densities than the 

cubic EOS. This disadvantage of the cubic EOS is taken into account. 

 

12.1.1 . CUBIC EQUATIONS OF STATE 

Cubic EOS are explicit regarding pressure and may be written in terms of a repulsive and an attractive 

contribution to the pressure 𝑃: 

 𝑃 =  𝑃𝑟𝑒𝑝 − 𝑃𝑎𝑡𝑡𝑟 (12.1) 

Classical examples of cubic EOS are those of van der Waals (vdW) (1873) [1]: 

 
𝑃 =

𝑅𝑇

(𝑉 − 𝑏)
−

𝑎

𝑉2
 (12.2) 

and Redlich and Kwong (R-K) (1940) [13]: 

 
𝑃 =

𝑅𝑇

(𝑉 − 𝑏)
−

𝑎

[𝑇0.5 ∙ 𝑉(𝑉 + 𝑏)]
 (12.3) 

where  

𝑅 = gas constant 

𝑇 = temperature 

𝑉 = molar volume 

There are two parameters;  

𝑏 − represents the "real," or hard-sphere volume of the molecules 

𝑎 − represents the intermolecular attraction. 

The parameters 𝑎 and 𝑏 in Eq. 12.2 and Eq. 12.3 are normally determined by imposing the critical 

conditions: 

 
[(

𝜕𝑃

𝜕𝑉
)

𝑇
= (

𝜕2𝑃

𝜕𝑉2)
𝑇

= 0]

𝑐𝑟𝑖𝑡.𝑝𝑜𝑖𝑛𝑡

 (12.4) 

The vdW and R-K EOS may be extended by altering their temperature-dependence and by including 

parameters in addition to 𝑎 and 𝑏.  

 

Jensen (1987) [14] defines two generalized cubic EOS, from which many of the commonly used 

equations may be derived: 

Type 1: The repulsive-term modified R-K EOS 

 
𝑃 =

𝑅𝑇 (2𝑉 + 𝑏1)(𝑇) 

𝑉(2𝑉 − 𝑏2(𝑇))
−

𝑎(𝑇)

(𝑉 + 𝑏3(𝑇))
 (12.5) 

 

Type 2: The attractive-term modified vdW EOS 

 
𝑃 =

𝑅𝑇  

(𝑉 − 𝑏1(𝑇))
−

𝑎(𝑇)

(𝑉 + 𝑏2(𝑇))(𝑉 + 𝑏3(𝑇))
 (12.6) 

Eq. 12.5 and Eq. 12.6 each contain four temperature-dependent parameters: 𝑎, 𝑏1, 𝑏2, and 𝑏3. Some 

of the EOS that may be derived from Eq. 12.5 and Eq. 12.6 are: 
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Soave-Redlich-Kwong (SRK), ([15] - Soave, 1972): 

 
𝑃 =

𝑅𝑇  

(𝑉 − 𝑏)
−

𝑎(𝑇)

𝑉(𝑉 + 𝑏)
 (12.7) 

Type 2:  𝑎 = 𝑎(𝑇), 𝑏1 = 𝑏, 𝑏2 = 0, 𝑏3 = 𝑏 

 

The Peng-Robinson EOS (PR), ([16] - Peng and Robinson, 1976)  

 
𝑃 =

𝑅𝑇  

(𝑉 − 𝑏)
−

𝑎(𝑇)

𝑉(𝑉 + 𝑏) + 𝑏(𝑉 − 𝑏)
 (12.8) 

Type 2:  𝑎 = 𝑎(𝑇), 𝑏1 = 𝑏, 𝑏2 = (1 + 20.5)𝑏, 𝑏3 = (1 − 20.5)𝑏  

 

The Adachi-Lu-Sugie EOS (ALS), ([17] - Adachi et al., 1983)  

 
𝑃 =

𝑅𝑇  

(𝑉 − 𝑏1)
−

𝑎(𝑇)

(𝑉 − 𝑏2)(𝑉 + 𝑏3)
 (12.9) 

 

Peneloux's modified SRK EOS, ([18] Peneloux et al., 1982) 

 
𝑃 =

𝑅𝑇  

(𝑉 − 𝑏)
−

𝑎(𝑇)

(𝑉 + 𝑐)(𝑉 + 𝑏 + 2𝑐)
 (12.10) 

Type 2: : 𝑎 = 𝑎(𝑇), 𝑏1 = 𝑏, 𝑏2 = 𝑐, 𝑏3 = (𝑏 + 2𝑐)  

 

The Ishikawa-Chung-Lu EOS, ([19] Ishikawa et al., 1980) 

 
𝑃 =

𝑅𝑇 (2𝑉 + 𝑏(𝑇)) 

𝑉(2𝑉 − 𝑏(𝑇))
−

𝑎(𝑇)

𝑇0.5𝑉(𝑉 + 𝑏(𝑇))
 (12.11) 

Type 1: 𝑎 = 𝑎(𝑇), 𝑏1 = 𝑏(𝑇), 𝑏2 = 𝑏(𝑇), 𝑏3 = 𝑏(𝑇) 

 

Many more examples exist ([14] - Jensen, 1987). The presence of parameters in addition to 𝑎 and 𝑏 as 

in the R-K and vdW EOS permits inclusion of constraints other than those given by Eq. 12.4. Careful 

evaluations informed the choice to base the oil/gas computations on the SRK EOS. No other cubic EOS 

tested yielded better results for naturally occurring oil and gas mixtures. 

 

12.1.2. THE SRK-EQUATION OF STATE 

The analytical form of the Soave-Redlich-Kwong (SRK)-equation of state [15] is given in Eq. 12.7. The 𝑎 

and 𝑏 parameters are found from the pressure-volume relationship at the critical point expressed in 

Eq. 12.4. By inserting the expression for the pressure given in Eq. 12.7 into Eq. 12.4 the following 

relations may be derived for the pure component 𝑎-parameter at the critical point and for the pure 

component 𝑏-parameter: 

 
𝑎𝑐𝑖 = 0.42747 ∙ 𝑅2 ∙

𝑇𝑐𝑖
2

𝑃𝑐𝑖
 (12.12) 

 
𝑏𝑖 = 0.08664 ∙ 𝑅 ∙

𝑇𝑐𝑖

𝑃𝑐𝑖
 (12.13) 

Values for 𝑇𝑐 and 𝑃𝑐 of some common petroleum mixture constituents are given in Tbl. 12.1 . 
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Tbl. 12.1. Critical Temperature (𝑇𝑐), Critical Pressure (𝑃𝑐) and Acentric Factor (ω)  

of Some Common Petroleum Mixture Constituents 

 
𝑇𝑐   
(K) 

𝑃𝑐   
(atm) 

ω 

N2 126.2 33.5 0.040 

CO2 304.2 72.8 0.225 

H2S 373.2 88.2 0.100 

C1 190.6 45.4 0.008 

C2 305.4 48.2 0.098 

C3 369.8 41.9 0.152 

i-C4 408.1 36.0 0.176 

n-C4 425.2 37.5 0.193 

i-C5 460.4 33.4 0.227 

n-C5 469.5 33.3 0.251 

n-C6 507.4 29.3 0.296 

 

The temperature dependence of the 𝑎 -parameter entering Eq. 12.7 is expressed in the form of a term 

𝛼𝑖(𝑇) which multiplied with 𝑎𝑐𝑖 gives the final expression for the 𝑎 -parameter of the SRK-equation: 

 𝑎𝑖(𝑇) = 𝑎𝑐𝑖𝛼𝑖(𝑇) (12.14) 

The 𝑎 parameter is obtained from the following expression: 

 
𝛼𝑖(𝑇) = (1 + 𝑚𝑖(1 − 𝑇𝑟𝑖

0.5))
2
 (12.15) 

where 

 𝑚𝑖 = 0.480 + 1.574𝜔𝑖 − 0.176𝜔𝑖
2 (12.16) 

It is seen from Eq. 12.15 that 𝛼𝑖(𝑇) = 1 at the critical temperature, where a therefore becomes equal 

to 𝑎𝑐𝑖. In Eq. 12.15 𝜔𝑖 is the acentric factor which is defined as follows [20] (Pitzer, 1955): 

 𝜔𝑖 = − log10 𝑃𝑟𝑖
𝑣𝑎𝑝 (𝑎𝑡 𝑇𝑟𝑖 = 0.7) − 1 (12.17) 

where 𝑃𝑟𝑖
𝑣𝑎𝑝

 is the reduced vapor pressure (𝑃/𝑃𝑐𝑖) of component 𝑖. 

The acentric factor may be interpreted as the non-sphericity of molecules of type 𝑖. Values for 𝜔𝑖 of a 

number of different components are given in Tbl. 12.1. The dependence of 𝑚𝑖 on 𝜔𝑖 given in Eq. 12.16 

is found from experimental vapor pressure data for aliphatic hydrocarbons ranging from C1 to C10 

([15] Soave, 1972). 

For a mixture, 𝑎 and 𝑏 are found as follows: 

 𝑎 = ∑ ∑ 𝑧𝑖𝑧𝑗𝑎𝑖𝑗

𝑗𝑖

 (12.18) 

 𝑏 = ∑ 𝑧𝑖𝑏𝑖

𝑖

 (12.19) 

where 𝑧𝑖  and 𝑧𝑗 are mole fractions of components i and j, respectively and: 

 𝑎𝑖𝑗 = (𝑎𝑖𝑎𝑗)
½

(1 − 𝑘𝑖𝑗) (12.20) 

𝑘𝑖𝑗 is a binary interaction coefficient, which is usually considered equal to zero for hydrocarbon-

hydrocarbon interactions, and different from zero for interactions between a hydrocarbon and a non-

hydrocarbon, and between unlike pairs of non-hydrocarbons. Tbl. 12.2 shows the non-zero binary 

interaction coefficients to be recommended for use with the SRK-equation [21] (Reid et al., 1977) for 

some lighter petroleum mixture constituents. 
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Tbl. 12.2. Non-Zero Binary Interaction Coefficients for use with the SRK-EOS  

between common Petroleum Mixture Constituents. [21] (Reid et al., 1977) 

Component 
Pair 

N2 CO2 H2S 

N2 0.00 0.00 0.00 

CO2 0.00 0.00 0.12 

H2S 0.00 0.12 0.00 

C1 0.02 0.12 0.08 

C2 0.06 0.15 0.07 

C3 0.08 0.15 0.07 

i-C4 0.08 0.15 0.06 

n-C4 0.08 0.15 0.06 

i-C5 0.08 0.15 0.06 

n-C5 0.08 0.15 0.06 

n-C6 0.08 0.15 0.05 

Eq. 12.7 can be rewritten in terms of the compressibility factor, 𝑍: 

 𝑍3 − 𝑍2 + (𝐴 − 𝐵 − 𝐵2)𝑍 − 𝐴𝐵 = 0 (12.21) 

where 𝑍 is defined as: 

 
𝑍 =  

𝑃𝑉

𝑅𝑇
 (12.22) 

and 𝐴 and 𝐵 are given by the following expressions: 

 
𝐴 =  

𝑎(𝑇)𝑃

𝑅2𝑇2
 (12.23) 

 
𝐵 =  

𝑏𝑃

𝑅𝑇
 (12.24) 

The polynomial of Eq. 12.21 may have one or three real roots. When for a pure component or a single-

phase mixture only one real root exists, this root equals the compressibility factor of the phase present. 

The compressibility factor of a dilute gas is close to unity. The compressibility factor of a near critical 

pure component is close to 0.33. Using the SRK-equation of state the compressibility factor of a pure 

component at the critical point will always be found equal to 0.33. In the case where the polynomial 

of Eq. 12.21 has three real roots, one or more phases may be found.  

 

In the case of two phases, each component will have equal fugacities, 𝑓𝑖, in both phases: 

 𝑓𝑖
𝑉 =  𝑓𝑖

𝐿 (12.25) 

where 𝑉 and 𝐿 refer to the vapor and liquid phases, respectively. The criterion of equal fugacities 

indicates equality in the driving forces in the transfer of components from one phase to the other. The 

fugacity is related to the chemical potential, 𝜇, as follows: 

 𝜇𝑖 = 𝜇𝑖
0 + 𝑅𝑇 𝑙𝑛 𝑓𝑖 (12.26) 

where 𝜇𝑖
0 is a standard-state chemical potential for component 𝑖. Eq. 12.25 can be rewritten: 

 
𝜙𝑖

𝑉𝑦𝑖 = 𝜙𝑖
𝐿𝑥𝑖  𝑜𝑟 𝐾𝑖 =

𝑦𝑖

𝑥𝑖
=

𝜙𝑖
𝐿

𝜙𝑖
𝑉 (12.27) 

where:  

𝑥𝑖 = mole fractions of component 𝑖 in liquid phase 

𝑦𝑖  = mole fractions of component 𝑖 in vapour phase 

𝜙𝑖 = fugacity coefficient 



12-6 
 

𝐾𝑖 =
𝑦𝑖

𝑥𝑖
 is called the equilibrium ratio. The following general thermodynamic relationship exists for 

determination of the fugacity coefficient of component i in the mixture: 

 
ln 𝜙𝑖 =  −

1

𝑅𝑇
 ∫ ((

𝜕𝑃

𝜕𝑛𝑖
)

𝑇,𝑉,𝑛𝑗

−
𝑅𝑇

𝑉
)

𝑉

∞

 𝑑𝑉 − ln 𝑍 (12.28) 

where 𝑛𝑖 is the number of moles of type i. When the SRK-equation is used Eq. 12.28 yields: 

 
ln 𝜙𝑖 =  

𝑏𝑖

𝑏
(𝑍 − 1) − ln 𝑍 + ln (

𝑉

𝑉 − 𝑏
)

+
𝑎

𝑏𝑅𝑇
[
𝑏𝑖

𝑏
− 2 ∑

𝑧𝑗(1 − 𝑘𝑖𝑗)(𝑎𝑖𝑎𝑗)
0.5

𝑎
𝑗

] ln (
𝑉 + 𝑏

𝑉
) 

(12.29) 

The phase compositions are related to the total composition as follows: 

 𝑥𝑖 =
𝑧𝑖

(1 + (𝐾𝑖 − 1)𝛽)
 (12.30) 

 
𝑦𝑖 =

𝐾𝑖𝑧𝑖

(1 + (𝐾𝑖 − 1)𝛽)
 (12.31) 

where: 

𝑧𝑖  = mole fraction of component i in the total mixture 

𝛽 = the molar vapor phase fraction 

 

The SRK-equation may also be used for calculation of other thermodynamic properties, e.g., the 

enthalpy and the entropy. The enthalpy, 𝐻 of a pure component, or a mixture of given composition, 

may be calculated as the sum of two contributions, namely the ideal gas enthalpy (𝐻𝑖𝑑) and the 

residual enthalpy (𝐻𝑟𝑒𝑠): 

 𝐻 =  𝐻𝑖𝑑 + 𝐻𝑟𝑒𝑠 (12.32) 

and similarly, for the entropy: 

 𝑆 =  𝑆𝑖𝑑 + 𝑆𝑟𝑒𝑠 (12.33) 

The ideal gas terms at temperature T are usually calculated from the following equations: 

 
𝐻𝑖𝑑 =  ∑ 𝑧𝑖

𝑖

𝐻𝑖
𝑖𝑑 = ∑ 𝑧𝑖

𝑖

∫ 𝐶𝑃
𝑖𝑑

𝑇

𝑇𝑟𝑒𝑓

𝑑𝑇 (12.34) 

 
𝑆𝑖𝑑 =  ∑ 𝑧𝑖

𝑖

(𝑆𝑖
𝑖𝑑 − 𝑅 ln 𝑧𝑖) = ∑ 𝑧𝑖

𝑖

(∫ (
𝐶𝑃

𝑖𝑑

𝑇
) 𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓

− 𝑅 ln (
𝑃

𝑃𝑟𝑒𝑓
) − 𝑅 ln 𝑧𝑖) (12.35) 

where : 

𝑇𝑟𝑒𝑓 is a reference temperature, here 0 °C.  

𝑃𝑟𝑒𝑓 is the reference pressure, here 1 atm. 

𝐶𝑃
𝑖𝑑 the ideal gas heat capacity,  

which is usually approximated by a third-degree polynomial in the temperature 

 𝐶𝑃
𝑖𝑑 = 𝐶1 +  𝐶2𝑇 + 𝐶3𝑇2 + 𝐶4𝑇3 (12.36) 

Values for the coefficients 𝐶1 − 𝐶4 of the lighter petroleum mixture constituents are given by Reid et 

al., (1977) [21]. The residual terms of Eq. 12.32 and Eq. 12.33 may be derived from the SRK-equation 

using the following general thermodynamic relations: 

 
𝐻𝑟𝑒𝑠 = −𝑅𝑇2

𝜕 ln 𝜙

𝜕𝑇
 (12.37) 

where 𝜙 is the fugacity coefficient of the mixture and the derivative is taken at constant pressure and 

total composition. Also 
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𝑆𝑟𝑒𝑠 =

𝐻𝑟𝑒𝑠

𝑇
− 𝑅 ln 𝜙 (12.38) 
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A summary of the equations used for computing the thermodynamic properties from the SRK equation 

of state is shown in the box: 

Summary of Equations Used for Calculating Fugacity Coefficients, Enthalpies and Entropies from the 
SRK-EOS [22] (Edmister and Lee, 1984) 

Soave-Redlich-Kwong (SRK) - EOS (Soave, 1972) [15]: 

𝑃 =
𝑅𝑇  

(𝑉 − 𝑏)
−

𝑎(𝑇)

𝑉(𝑉 + 𝑏)
 

𝑎𝑖(𝑇) = 𝑎𝑐𝑖𝛼𝑖(𝑇) 

 𝛼𝑖(𝑇) = (1 + 𝑚𝑖(1 − 𝑇𝑟𝑖
0.5))

2
 

 𝑚𝑖 = 0.480 + 1.574𝜔𝑖 − 0.176𝜔𝑖
2 

𝑎𝑐𝑖 = 0.42747 𝑅2
𝑇𝑐𝑖

2

𝑃𝑐𝑖
 

𝑏𝑖 = 0.8664 𝑅 
𝑇𝑐𝑖

𝑃𝑐𝑖
 

𝑎 = ∑ ∑(𝑎𝑖𝑎𝑗)
0.5

 𝑧𝑖𝑧𝑗(1 − 𝑘𝑖𝑗) 

𝑗𝑖

 

𝑏 = ∑ 𝑧𝑖𝑏𝑖

𝑖

 

Fugacity coefficient at constant composition, 𝝓: 

ln 𝜙 = 𝑍 − 1 − ln(𝑍 − 𝐵) − (
𝐴

𝐵
) (1 +

𝐵

𝑍
) 

𝑍 =
𝑃𝑉

𝑅𝑇 
 ;      

𝐵

𝑍
=

𝑏

𝑉
 ;       

𝐴

𝐵
=

𝑎

𝑏𝑅𝑇
 

Fugacity coefficient of component i in a mixture, 𝝓𝒊: 

ln 𝜙𝑖 = − ln(𝑍 − 𝐵) + (𝑍 − 1)
𝑏𝑖

𝑏
−

𝐴

𝐵
[
1

𝑎
(2𝑎𝑖  ∑ 𝑧𝑗𝑎𝑗

0.5

𝑗

(1 − 𝑘𝑖𝑗)) −
𝑏𝑖

𝑏
ln (1 +

𝐵

𝑍
)] 

Enthalpy at constant composition, H: 

𝐻𝑖𝑑 =  ∑ 𝑧𝑖𝑖 𝐻𝑖
𝑖𝑑              (id means ideal gas) 

𝐻𝑖
𝑖𝑑 =  ∫ 𝐶𝑃

𝑖𝑑
𝑇

𝑇𝑟𝑒𝑓

𝑑𝑇 

𝐻𝑟𝑒𝑠 = 𝑅𝑇 [𝑧 − 1 −
𝐴

𝐵
(1 −

𝑇

𝑎

𝑑𝑎

𝑑𝑇
) ln (1 −

𝐵

𝑍
)] 

𝑇
𝑑𝑎

𝑑𝑇
= − ∑ ∑ 𝑧𝑖𝑧𝑗𝑚𝑗(𝑎𝑖𝑎𝑐𝑗𝑇𝑟𝑗)

0.5
 (1 − 𝑘𝑖𝑗) 

𝑗𝑖

 

𝐻 =  𝐻𝑖𝑑 + 𝐻𝑟𝑒𝑠 
Entropy at constant composition, S; 

𝑆𝑖𝑑 =  ∑ 𝑧𝑖

𝑖

(𝑆𝑖
𝑖𝑑 − 𝑅 ln 𝑧𝑖) = ∑ 𝑧𝑖

𝑖

(∫ (
𝐶𝑃

𝑖𝑑

𝑇
) 𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓

− 𝑅 ln (
𝑃

𝑃𝑟𝑒𝑓
) − 𝑅 ln 𝑧𝑖) 

𝑆𝑟𝑒𝑠 = ln(𝑍 − 𝐵) +
𝐴

𝐵
[
𝑇

𝑎

𝑑𝑎

𝑑𝑇
] ln (1 −

𝐵

𝑍
) 

𝑆 =  𝑆𝑖𝑑 + 𝑆𝑟𝑒𝑠 
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12.2. PHASE DENSITIES 

 

The phase densities may be determined from the SRK-equation by using Eq. 12.7 or Eq. 12.21. In 

general, good results are obtained for vapor phase densities, whereas the liquid phase densities are 

somewhat underestimated [23] (Pedersen et ah, 1984). Using the SRK-equation for density 

calculations in cases where the liquid phase densities are of importance is therefore not 

recommended. 

It is generally advantageous to use the same density correlation for both gas and liquid phases (e.g., 

to avoid discontinuities in the near critical region).  

12.2.1 Peneloux method 

Peneloux et al. (1982) [18] have presented a consistent method for correction of SRK-volumes using 

an equation of state of the following form: 

 
𝑃 =

𝑅𝑇  

(𝑉 − 𝑏)
−

𝑎

(𝑉 + 𝑐)(𝑉 + 𝑏 + 2𝑐)
 (12.39) 

where 𝑐 is a constant, which for a mixture is calculated as follows: 

 𝑐 = ∑ 𝑐𝑖𝑧𝑖

𝑖

 (12.40) 

𝑐𝑖 is the value of 𝑐 for component 𝑖. The SRK-equation (Eq. 12.7), and Eq. 12.39 give identical results 

for saturation points and K-factors, but different results for gas and liquid phase volumes. The SRK-

volume, 𝑉̃, and the Peneloux-volume, 𝑉, are related as follows: 

 𝑉 = 𝑉̃ − 𝑐 (12.41) 

The parameter 𝑐 can therefore be regarded as a volume translation parameter. Martin (1979) [24] has 

a discussion on the volume translation concept. 

For non-hydrocarbons and for hydrocarbons < C7 the following expression is used for 𝑐: 

 
𝑐𝑖 = 0.40768 

𝑅𝑇𝑐𝑖

𝑃𝑐𝑖

(0.29441 − (𝑍𝑅𝐴)𝑖) (12.42) 

where (𝑍𝑅𝐴)𝑖  is the Racket compressibility factor [25] (Spencer and Banner, 1973) of component 𝑖 for 

which the following approximation is used: 

 (𝑍𝑅𝐴)𝑖 = 0.29056 − 0.08775 𝜔𝑖 (12.43) 

Peneloux et al. (1982) [18] suggest finding the 𝑐 -value of paraffinic, naphthenic, and aromatic C7+-

components, respectively, from fifth-degree polynomials in the carbon number. Pedersen et al. (1984) 

[23] have found that this procedure works reasonably well for gas and gas condensate mixtures, while 

inaccurate results are obtained for heavy oil mixtures. The 𝑐 -parameter of C7+ -components (or 

fractions) may instead be found as the difference in the results for the molar volume at atmospheric 

pressure and 15°C, calculated with the SRK-equation and determined experimentally (Pedersen et al, 

1988) [26]. 

Far from the critical point it is of less importance to get consistent results for gas and liquid phase 

densities. Liquid density correlations developed specifically for petroleum mixtures are then often 

superior to the Peneloux [18] procedure. Examples of such procedures follow. 
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12.2.2. The Alani-Kennedy Equation 

The form of the Alani-Kennedy equation (1960) [27] is: 

 
𝑉3 − (

𝑅𝑇

𝑃
+ 𝑏) 𝑉2 +

𝑎𝑉

𝑃
−

𝑎𝑏

𝑃
= 0 (12.43) 

For pure substances: 

 𝑎 = 𝐾 exp (
𝑛

𝑇
) (12.43) 

and 

 𝑏 = 𝑚𝑇 + 𝐶 (12.43) 

where 𝐾, 𝑛, 𝑚, and 𝐶 are constants. Values for the lighter hydrocarbons are given in Tbl. 12.3. It is 

suggested using the methane values also for N2, CO2, and H2S. 

Tbl. 12.3. Constants of the Alani-Kennedy Equation for Pure Hydrocarbons [27] 

Component 𝐾 𝑛 𝑚 ∙ 104 𝐶 

C1 (70-300°F) 9160.6413 61.893223 3.3162472 0.50874303 

C1 (301-460°F) 147.47333 3247.4533 -14.072637 1.8326695 

C2 (100-249°F) 46709.573 -404.48844 5.1520981 0.52239654 

C2 (250-460°F) 17495.343 34.163551 2.8201736 0.62309877 

C3 20247.757 190.24420 2.1586448 0.90832519 

i-C4 32204.420 131.63171 3.3862284 1.1013834 

n-C4 33016.212 146.15445 2.9021257 1.1168144 

n-C5 37046.234 299.62630 2.1954785 1.4364289 

n-C6 52093.006 254.56097 3.6961858 1.5929406 

Units: P in psia; T in °R; V in ft3/lb-mol; R = 10.7335 lb-ft3/(in.)2 °R Ib-mol.  

Source: Alani and Kennedy (1960) [27]. 

 

The values of 𝑎 and 𝑏 of a C7+-fraction are found from the following expressions: 

 
ln 𝑎𝐶7+ = 3.8405985 ∙ 10−3𝑀𝐶7+ − 9.5638281 ∙ 10−4

𝑀𝐶7+

𝜌𝐶7+
+

2.6180818 ∙ 102

𝑇

+  7.3104464 ∙ 10−6(𝑀𝐶7+)2 + 10.753517 

(12.47) 

 𝑏𝐶7+ = 3.4992740 ∙ 10−2𝑀𝐶7+ − 7.2725403 ∙ 𝜌𝐶7+ + 2.2323950 ∙ 10−4𝑇

− 1.6322572 ∙ 10−2
𝑀𝐶7+

𝜌𝐶7+
+ 6.2256545 

(12.48) 

where  

MC7+ = molecular weight of the total C7+-fraction 

𝜌𝐶7+ = density (in g/cm3) of the total C7+-fraction at 1 atm and 15°C 

𝑎 and 𝑏 of a mixture are found as molar averages. The Alani-Kennedy equation [27] gives accurate 

results for liquid densities, but it is not applicable to vapor phase densities. 
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12.2.3. The Standing-Katz Procedure [28] 

This was originally developed as a graphical procedure (Standing and Katz, 1941) [28].   

The Standing-Katz procedure gives accurate density results for liquid phases with a large concentration 

of heavy components. The procedure is not applicable to vapor phases. 

The analytical solutions are described in the compendium. 

Analytical expressions [23] (Pedersen et al., 1984) approximating the graphical form permit the 

correlations to be applied in computer calculations also. Further information could be looked up in the 

book Properties of oils and natural gases (K. S. Pedersen, A. Fredenslund & P. Thomassen). 

 

12.2.4. The API Method 

Calculation of the liquid density using the API method (1982) involves the following steps:  

1. Calculation of the pseudocritical temperature (𝑝𝑇𝑐) and pressure (𝑝𝑃𝑐) for the mixture in question. 

These values are obtained as molar averages of the pure component critical temperatures and 

pressures. 

2. Calculation of the pseudo reduced temperature (𝑝𝑇𝑟) and the pseudo reduced pressure (𝑝𝑃𝑟): 

 
𝑝𝑇𝑟 =

𝑇

𝑇𝑐
  

 
𝑝𝑃𝑟 =

𝑃

𝑃𝑐
 

 

3. Calculation of the average density for the mixture at 60°F and 1 atm from the following formula: 

 
𝜌𝐿 =

∑ 𝑥𝑖 ∙ 𝑀𝑖
𝑛
𝑛=1

∑
𝑥𝑖 ∙ 𝑀𝑖

𝜌𝑖

𝑛
𝑛=1  

 (12.49) 

 

Tbl. 12.5 API Pure Component Densities (𝜌) at 1 atm and 15°C. 

Component Density 𝜌, 
(g/cm3) 

N2 0.804 

CO2 0.809 

H2S 0.834 

C1 0.300 

C2 0.356 

C3 0.508 

i-C4 0.563 

n-C4 0.584 

i-C5 0.625 

n-C5 0.631 

C6 0.664 

 

𝜌 values for non-hydrocarbons and for C1 - C6 are given in Tbl. 12.5. The measured densities at 

standard conditions are used for the C7+-components. 
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4. Calculation of the density correlation factor, 𝐶, at standard conditions and at the actual conditions. 

𝐶 is given by the following expression: 

 𝐶 = 𝐴1 + 𝐴2 ∙ 𝑝𝑇𝑟 + 𝐴3 ∙ (𝑝𝑇𝑟)2 + 𝐴4 ∙ (𝑝𝑇𝑟)3 (12.50) 

Each of the coefficients 𝐴1 − 𝐴4 in Eq. 12.50 is determined by an expression of the following form: 

 𝐴𝑖 = 𝐵1 + 𝐵2 ∙ 𝑝𝑃𝑟 + 𝐵3 ∙ (𝑝𝑃𝑟)2 + 𝐵4 ∙ (𝑝𝑃𝑟)3 + 𝐵5 ∙ (𝑝𝑃𝑟)4 (12.51) 

where the 𝐵𝑖  values are given in Tbl. 12.6.  

Tbl. 12.6. Coefficients of Eq. 12.51 for Calculation of Liquid Densities Using the API-Method (API 

(1982). 

 B1 B2 B3 B4 B5 

A1 1.6368 -0.04615 2.1138(10-3) -0.7845(10-5)  -0.6923(10-6)  

A2 -1.9693 0.21874 -8.0028(10-3)  -8.2328(10-5)  5.2604(10-6)  

A3 2.4638 -0.36461 12.8763(10-3)  14.8059(10-5)  -8.6895(10-6)  

A4 -1.5841 0.25136 -11.3805(10-3)  9.5672(10-5)  2.1812(10-6)  

 

5. Calculation of the unknown density from the equation: 

 
𝜌 = 𝜌𝐿

𝐶1

𝐶2
 (12.52) 

where the 𝐶1 and 𝐶2 are the density correlation factors (Eq. 12.50) at standard conditions, and at the 

actual conditions, respectively. 

 

The API-density method is only applicable to liquid phases. 
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